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Abstract—We present a novel approach for disentangling the content of a text image from all aspects of its appearance. The
appearance representation we derive can then be applied to new content, for one-shot transfer of the source style to new content. We
learn this disentanglement in a self-supervised manner. Our method processes entire word boxes, without requiring segmentation of
text from background, per-character processing, or making assumptions on string lengths. We show results in different text domains
which were previously handled by specialized methods, e.g., scene text, handwritten text. To these ends, we make a number of
technical contributions: (1) We disentangle the style and content of a textual image into a non-parametric, fixed-dimensional vector. (2)
We propose a novel approach inspired by StyleGAN but conditioned over the example style at different resolution and content. (3) We
present novel self-supervised training criteria which preserve both source style and target content using a pre-trained font classifier and

text recognizer. Finally, (4) we also introduce Imgur5K, a new challenging dataset for handwritten word images. We offer numerous
qualitative photo-realistic results of our method. We further show that our method surpasses previous work in quantitative tests on

scene text and handwriting datasets, as well as in a user study.

Index Terms—Text Generation, Style Transfer, Style Disentanglement

1 INTRODUCTION

HE term fext aesthetics refers to all aspects of how a text
Tappears, including typography (for printed text [1]), callig-
raphy (for stylized handwriting [2]), spatial transformations and
deformations, and even background clutter and image noise. For
simplicity, we refer to all these elements simply as the text
Style. We present a self-supervised method for learning how to
disentangle text image style vs. content and one-shot style transfer.
We thus enable functionality similar to that of style brush tools in
standard word processors, but for text images: Applying the visual
style of a source text to new text content (Fig. 1).

This task is ambitious. Every person has one or more unique
handwriting styles which can change over time. To these already
limitless text style variations, add all stylized and designer text
appearances, used in product logos, street signs [3], [4], [5],
historical manuscripts [6], [7], and many others, to get an idea of
the full range of text style diversity. Moreover, it is unreasonable
to expect text images used as style samples to provide example
appearances for the entire alphabet (including digits). Transferring
styles between strings with different characters therefore implies
hallucinating plausible appearances of unseen characters in the
input style.

We aim at a general approach, which can be applied to text,
irrespective of its domain (e.g., scene text, handwritten). We
cannot, therefore, make domain-specific assumptions, such as that
the input text can be neatly segmented from its background [8],
[9], that we can process each character separately [10], [11],
[12], or restrict it to a particular domain [13], [14] (such as
handwriting).

We describe fext style brush (TSB) for text-style disentan-
glement and transfer. Our method is self-supervised and trained
on text samples from real photos, without ground truth style
labels. Given a detected text box containing a source style, our
method extracts an opaque latent style representation: We do
not define this representation using semantic parameters (e.g.,
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Fig. 1: Text generation/editing using TextStyleBrush. (Top) De-
tected words highlighted in blue boxes edited by changing their
content and shown in the target image. (Bottom) Given the source
handwritten word image (left), we generate a target sentence
image mimicking the same handwritten style (right).

typeface, color encoding, spatial transformation). Instead, we
optimise our representation to allow photo-realistic rendering of
new content in the source style. This transfer is applied in a
one-shot manner, using only the single source sample to learn
the desired text style. We do not segment text into individual
characters, or assume that the source style and new content share
the same length. Soft segmentation masks are learned, however,
in a self-supervised manner, in order to improve the quality of
foreground (text) produced by our generator.

To enable these novel capabilities, we make the following
technical contributions.

e We propose style and content encoders for one-shot disen-
tanglement of a source style image.
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e We describe a novel generator, conditioned on content and
multi-scale style which generates the target style image
along with the foreground mask.

e Our method is self-supervised, learning to preserve both
source style and target content using novel loss functions.

e We release a new large-scale handwritten in-the-wild
dataset, Imgur5K, containing challenging real world hand-
written samples from nearly 5K writers.

The paper and supplementary material provide numerous qual-
itative examples of scene and handwritten text style transfers (e.g.,
Fig. 1). We further report quantitative results, demonstrating better
style transfer than recent, state of the art (SotA) methods, and
recognition tests, showing our results remain easier to recognize
than those produced by others. Finally, we report a user study,
testifying to the improved photo-realism of our results compared
to existing methods.

2 RELATED WORK

Generative image modelling and style transfer. Models trained
to generate photo-realistic content are rapidly improving, based
on the progress made on adversarial networks (GAN) [15] and
variational autoencoders (VAE) [16]. Isola et al. [17] proposed
the pix2pix method which uses conditional generative adversarial
networks (cGAN) to control the generated content. Zhu et al. [18]
extended this approach to unpaired, image-to-image translation by
learning a mapping between two domains based on cycle consis-
tency. In our work we are interested in performing style transfer
in an image-to-image translation setting. Style transfer [19], [20],
[21] methods extract style from one image and apply it to new con-
tent. Huang et al. [21] described adaptive instance normalization
(AdalN) layers for better infusion of style into intermediate feature
maps of the generation process. The idea of injecting learned styles
using AdalN layers has motivated many methods in unsupervised
(MUNIT) [22], few-shot (FUNIT) [23], multi-domain [24] setting
in natural scene objects. These methods process object classes
that have an abundance of intra-class examples from the same
“style” (e.g., cats, dogs). These settings were leveraged to design
their multi-task discriminator, style code learning. By comparison,
we have far less examples of individual styles, cannot depend
on few-shot learning setting in real world scene text images,
and the definition of styles could be much more arbitrary. We
thus rely on self-supervision via our novel loss functions which
preserves desired textual content and style. Importantly, FUNIT
was shown [25] to fail in translating handwriting styles.

Karras et al. [26] generated high-res and high quality content
by progressively growing networks in training. Subsequent work
introduced StyleGAN, which disentangles an input latent vector
in an intermediate latent space, allowing control of high-level
attributes and stochastic variations [27]. This work was further
extended by StyleGAN2 [28] which improved generator normal-
ization and proposed path length regularization for better training.
We build on the StyleGAN2 architecture, proposing multiple
novelties to adapt it to text images.

Text generation and style transfer. These methods attempt to
capture text styles from source images and apply them to new
content. Yang et al. [29] represented styles using textures from
image patches of individual glyphs. Their method, however, is
computationally expensive. MC-GAN [12] reduced computation
by using stacked cGANs with two sub-networks, capturing text
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content and style for individual glyphs. Yang et al. [11] dis-
entangled glyph style and content using autoencoders. Another
recent work in this domain is FET-GAN [30] which proposed
a K-Shot learning for learning styles and uses AdalN layers for
style injection. These methods are limited to individual glyphs
and unsuitable for learning style information in the wild, as we
propose. Moreover, FET-GAN uses multiple target images for
supervision; we use a single text box and no external style super-
vision / labels. Although they present results in an unsupervised
too, the quality is quite limited. Without style supervision, we, by
contrast, depend on indirect signals, captured by our novel losses
in an self-supervised manner.

Spatial fusion GAN (SF-GAN) [31] generates text images by
superimposing a foreground content image, transformed to match
the style and geometry of a background image. This approach
is aimed more at pure text synthesis on image regions without
text, whereas we aim at style transfer, replacing existing content
with new, using the same style. Gomez et al. [32] used neural
style transfer to selectively stylize textual regions of a content
image, rendered in a particular style, based on a style image. Their
method, however, cannot generate new content, only modify the
style of existing text. We formulate the problem more generally, as
one-shot disentanglement of style from content and style transfer
to new content.

Scene text editing. Scene text editors typically transfer the text
style of an input image to target content, transfer the background
style to the target background, and then blend the two. Recent deep
learning—based examples include SRNet [8], which offers an end-
to-end trainable style retention network. SWAPText [9], extended
SRNet by proposing to additionally model the geometric trans-
formation of the text by using N fiducial points. These methods
require target style images for training, thereby being restricted to
training on synthetic data. Our method is self-supervised and so
does not require target style labels for training and can easily train
on real photos.

Finally, STEFANN [10] recently proposed a font adaptive
neural network that replaces individual characters in the source im-
age using a target alphabet. This approach assumes per-character
segmentation which is impractical in many real world images.

Handwritten text generation. Handwritten text is challenging
due to the high inter-class variability of text styles — from writer to
writer — and intra-class variability of same writer styles. Dense text
CycleGAN [33] translates handwritten Chinese characters from a
machine font to particular handwritten styles. Alonso et al. [34]
proposed an offline handwriting generator for fixed-size word
images. ScrabbleGAN [13] used a fully-convolutional handwritten
text generation model that can handle arbitrary text lengths. Most
of these methods generate text from random style vectors and so
are not directly comparable with our work. Kang et al. [25] used
three learning objectives to model handwritten text style, content,
and appearance. Their work formulates the training of styles in
a K-shot manner and also uses a supervised writer classification
network to learn the target style of an author. In contrast, our work
only uses one single style image (both training and testing), and
we also do not rely on external supervision for writer styles.

One of the closest work to ours is the recent work from Davis
et al. [14] which also uses a StyleGAN-based generator for gen-
erating handwritten lines with a self-supervised training criterion
and utilizes perceptual loss, and an OCR-based recognition loss
function. The method is more relevant for the handwriting domain
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Fig. 2: Overview of our proposed approach, at training. Content and style encoders, in green, are detailed in Sec. 3.1. The mapping
network and generator are explained in Sec. 3.2. Our loss functions, in yellow, are explained in Sec. 4.

since the notion of spaced text using CTC output is applicable for
horizontally-aligned text and would not work well for scene text
where rotation and curved texts are quite common. In contrast,
our method is seamlessly applicable for both the scene text and
handwritten domains. We also use a different form of content
encoding, train the perceptual classifier (referred as typeface
classifier in our work) differently and generate a foreground mask
in a self-supervised manner to better learn the nuances of different
textual styles. In Sec. 6.4 & 6.5, we show that TSB surpasses
this work both quantitatively and in an user study for the task of
generating handwritten word images.

3 METHODOLOGY

Fig. 2, illustrates the proposed TSB architecture. We formulate
training in a self-supervised manner where we do not have target
style supervision and only use the original style image; our
framework is designed to supervise itself in seeking photo-realistic
results. We do, however, assume to have the ground truth content
of each word box when training (the text appearing in it). During
inference, we take a single source style image and new content
(i.e., a character string), and generate a new image in the source
style with the target content.

We denote the input style image along with its context by
I . € REXWX3 and its implicit style as s. The content string is
denoted by c. As we explain in Sec. 3.1, we represent ¢ using a
synthetically rendered image, 7 ..

Our entire framework consists of seven networks. We use a
style encoder (F) and content encoder, (F.), to convert the
input style and content images to latent representations e and
e. respectively (Sec. 3.1). Given ey, our style mapping network,
M, is used to produce multi-scale style representations, w ;,
which are then processed by a stylized text generator network, G
(Sec. 3.2). Finally, our framework is trained using multiple losses
which involve a style loss computed using a typeface classifier
pre-trained on a limited set of synthetic fonts, C' (Sec. 4.1), a
content loss, which uses a pre-trained OCR recognition model, R
(Sec. 4.2), and a discriminator, D (Sec. 4.4).

3.1 Style and content encoders

We extract latent style and content representations given a text
image and an input content string. To this end, we use two
encoders: for style, (F), and content, (F). Thus, style repre-
sentation is produced by eg = Fs (]IS,C) and content representation
by ec = Fo(Zs o).

Our content is a character string, e.g., a word (“EARTH”).
To simplify training of the two encoders, we opt for a unified
input representation which we use for both (Fy), and content,
(F.): a word image. Given a character string ¢ for content,
we therefore render it using a standard font for the text, Verily
Serif Mono, on a plain white background, producing the image
Isc € RO4*W wwhere § denotes the standard font (Fig. 2). Both
encoders use a adapted version of ResNet34 architecture [35]
with modifications in the last layers. The content representation
e, € R12X4xW i5 computed prior to the average pooling layer
so that one can preserve the spatial properties. Here, 512 is the
number of channels in last convolutional feature block.

The style encoder is given a localized scene image (I )
along with a word bounding box, denoting the word image from
which the style is learned. We found the use of localized scene
image (word image + context) helpful since it enables preserving
the aspect ratio of input word image and also brings additional
contextual features for learning background style components.
The penultimate layer of style encoder uses a region of interest
(Rol) align operator as described in Mask R-CNN [36] to pool
features coming from the desired word region, thereby reducing
the style tensor to a fixed, 512D representation. Note that, both
these encoders are fully convolutional and can handle variable
sized inputs and outputs.

3.2 Generator and style mapping network

For our stylized text generator, G, we use a model based on
StyleGAN2 [28], due to the exquisite, photo-realistic images it
generates in domains such as faces and outdoor scenes. For our
goal of generating photo-realistic text images, however, the design
of StyleGAN2 has two important limitations.

First, StyleGAN?2 is an unconditional model which generates
images by sampling a random latent vector, z € Z. We, however,
need to control the output based on two separate sources: Our
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desired new text content and the existing style. A second limitation
relates to the unique nature of stylized text images. Faithfully rep-
resenting text styles involves a combination of global information
—e.g., the spatial transformation of the text, its color palette — with
detailed, fine-scale information such as the existence of serifs [37]
or minute variations of individual penmanship styles [38].

We address these limitations jointly, by introducing key novel-
ties to the standard StyleGAN2 model, as illustrated in Fig. 2.
We condition our generator on our content, €., and style, eg,
representations. The content representation is directly fed as the
input to the first layer of the generator instead of providing the
learned tensor which was used in the original StyleGAN2 model.

We further handle the multi-scale nature of text styles by
extracting layer-specific style information. To this end, we intro-
duce a style mapping network, M, which converts e, to layer-
specific style representation, ws ;, where % indexes the layers of
the generator which are then fed as the AdalN normalization
coefficient [21] to each layer of the generator. Thus, we allow
the generator to control both low and high resolution details of the
text appearance to match a desired input style.

To further address the issue of preserving the target style and
its minute variations, we additionally model the generation of
foreground components of the image (pixels belongs to the text).
As shown in Fig. 2, we generate a soft mask (M ) along with
the generation of target image. The zoomed-out figure shown in
the right part of architecture illustrates the novelties introduced to
the generator layers to compute the mask. The mask is generated
at each layer by taking channel wise concatenated inputs from
the current layer RGB image and the previous layer mask. It
uses the sigmoid activation function to compute soft weights for
each pixel denoting its probability to foreground (text region)
or background region. The final mask provides a soft semantic
segmentation of the generated image and is later used to construct
the loss functions. Note that the mask is also learned in a self-
supervised manner, in particular, no mask labels are provided
during training. The advantage of learning mask is validated in
the ablation study conducted in Sec 6.4. Finally, consequent to
these changes, we eliminate the use of the noise vector input of
the standard StyleGAN2.

4 TSB TRAINING

We do not assume that we have style labels for training our
method on real photos. In fact, because of the essentially limitless
variability of text styles, it is not clear what high level parameters
can be used to capture these styles. We therefore take an indirect
approach, decoupling our loss into components which, taken
together, allow for effective self-supervision of our training.

As shown in the Fig. 2, we provide two content inputs
(Zs,¢,,2s,c,) while training the network along with the input
scene image I ., which contains the stylized word. We assume
the ground truth text content for the input c¢; known while
training. The generator produces the target images (Os ., Os.c,)
along with their masks (M ¢, , M ¢,). Note that, due to self-
supervision, the ground truth for O, ., is Z, ., (cropped word
image from I ,), however the ground truth for O, ., remains
unknown. We use the following loss functions, explained next, to
enable learning text styles along with their masks, indirectly, in a
self-supervised manner.

4.1 Text perceptual losses

We measure how well our generator captures the style of input text
by using an approach analogous to perceptual loss [8], [9], [19],
[22]. Specifically, we assume a pre-trained typeface classification
network, C'. Importantly, we make no assumption that the fonts
C was trained to classify would appear in the photos we use to
train and evaluate our TSB. Network C' is only used to provide a
perceptual signal for training. In particular, this network is trained
to identify standard synthetic fonts.

For details of the synthetic data used to train C, see Sec. 6.2.
We use this data to train a VGG19 network [39] to produce a font
class given a word image. Training used the softmax loss with
one-hot encoded font class labels. Note that the synthetic data is
only used to pre-train C' while all other components of the TSB
architecture are trained using real-world datasets where there is no
availability of target font information.

Given a word image, we extract the following values from C'
to compute our fext-specific perceptual loss, Ciype:

gtype = Algper + Aolies + )\3€emb7 (H
1
Eper = E[Z ﬁ || ¢i(IS,C1) - ¢i(08,cl) Hl]a 2

Etex = El[” G?(Isﬂu) - G?(OS,Cl) Hﬂ’ (3)
lomp = E[” '(/)(Is,cl) - w(os,q) ||1] “4)

Here, £, corresponds to the perceptual loss computed from the
feature maps at layer ¢ denoted as ¢; and M; is the number of
elements in the particular feature map which is used as normaliza-
tion. Next, f;.,. is a texture loss (also known as style loss [19]),
computed from the Gram matrices G? = ¢;¢l of the feature
maps. Both these losses are computed on the initial set of layers
of VGG which are: relul_1, relu2_1, relu3_1, relu4_1, relu5_1.

We additionally use an embedding-based loss which we com-
pute from feature maps, 1, of the penultimate layer of this trained
typeface classification network. We use the perceptual and texture
losses to learn more about the background style information while
the embedding loss provides font-level cues for the generated
image. Note that the perceptual losses are only computed for the
output image corresponding to original content c;.

4.2 Text content loss

We use a pre-trained text recognition network, R, to evaluate
the content of the generated images. We use the output string
estimated by R to compute a loss, £r, which reflects how well
the generator captured the desired content string, ¢y, co simul-
taneously on both target images (O ,, Os.c,) and their masks
(Mo ¢, Ms.c,). Ideally a recognizer should only focus on the
text content (foreground element) of the image irrespective of the
its background elements. Therefore, constraining it to recognize
the same content string on both the target generation and its mask
allows us to align it well. In practice, we use an existing word
pre-trained recognition model by Baek et al. [40]. Of the ones
proposed in that paper, we chose the model with the following
configuration, though we did not optimize for this choice: (1) spa-
tial transformation network (STN) using thin-plate spline (TPS)
transformation, (2) feature extraction using ResNet network, (3)
sequence modelling using BiLSTM, and (4) an attention-based
sequence prediction. This OCR was favored above other methods
which may be more accurate [41], due to its simplicity and ease
of integration as part of our approach.
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The content loss is computed by measuring the cross entropy
between the sequence of characters in the input string, ci, ca, the
predicted string, ¢}, ¢}, respectively and are represented as one-hot
vectors.

4.3 Reconstruction losses

A reconstruction loss function is one of the important loss criteria
in self-supervised learning. In this work, we capitalize on the
learned mask image to disentangle the foreground and background
pixels of the generated image, thereby allowing us to apply
reconstruction losses effectively. We use two reconstruction losses:
lrec and £yc. Here, {,.. represents the differences between the
output-generated image in style s and content ¢1, O, ¢,, and the
cropped input-style example, Z; ., .

To further enforce the presence of target style in generation
we perform a cyclic reconstruction on the generated image. We
compute a fake style vector, e, = F(Os ., ), and generate Oy .
Here, O ., is a localized stitched image along with the context
region taken from the input I, . . The loss, {cyc, is computed
between O, . and Z; .. We use an L; loss criterion for both
reconstruction losses and split these functions on the foreground
and background region separately using the generated masks. This
allows the network to learn fine-grained variations of the style
present in the foreground region.

4.4 The combined loss

Our full loss is given by the following expression:
{= eD + )\4£R + gtype + )\5€rec + )\6€cyc- ©)

Here, ¢p denotes the discriminator-based adversarial loss. We use
the non-saturating loss function [15] with R; regularization for the
discriminator and path length regularization [28] for the generator.
Other terms appear in previous sections: g is the content loss
of Sec. 4.2, {yyp,. refers to losses computed by the typeface
classification network, C, Sec. 4.1. Finally, {;.. and £y, are
the reconstruction and cyclic reconstruction losses, respectively
(Sec. 4.3). While training our network, we keep the weights of
the pre-trained networks, R and C, frozen. We empirically set the
values of the balance factors A\; — Ag and report in Sec. 6.1.

4.5

During inference, we present a novel localized style word image
(or a cropped word) I, € RHXWX3 a5 input to the style
encoder and the target content as a synthetically rendered image
Zs.c € R54XW {6 the content encoder. The learned representation
es, €. from these encoders are given as the conditional data to the
generator which generates the target image, O, . € RO4*Wx3
and its mask M, . € R4*W  Please note that all the network
components in the inference pipeline are fully convolutional and
therefore support variable length generation.

Inference

5 IMGUR5K HANDWRITING SET

Although there are many data sets for training and evaluating OCR
systems on printed and scene text (see Singh et al. for a recent
survey [42]), we found that existing collections of handwritten
word images to be limited in their variability (See Table 1). To
facilitate training and testing of our TSB, we, therefore, collected
and annotated ~ 135K handwritten English words from 5K images
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Fig. 3: Imgur5K word images. (Cols 1-4) Sample word images
from the Imgur5K dataset. (Col 5) A single sample word image
from each of the datasets (top to bottom) GW, CVL, Bentham,
IAM respectively.
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Dataset #Words  #Lexicon #Writers #Pen Styles Bg. Clutter
GW [43] 4,894 1.4K 1* Low Low
CVL [44] 101,069 292 ~ 311 Low Low
Bentham RO [45] 110,000 9.5K 1* Low Medium
IAM [46] 115,320 13.5K ~ 657 Medium Low
Our Imgur5K 135,375 27K ~ 5305 High High

TABLE 1: Comparison of popular datasets of handwritten
English words. 1* denotes documents written primarily by one
author (though an unknown number of assistants may have also
contributed to the set.)

originally hosted publicly on Imgur.com. Images were selected
based on their affiliation with online handwriting communities,
which favor unique scripts and upload snapshots of novel hand-
writing. Collected images were annotated for word-level bounding
boxes and the strings contained within. Each image was assigned
to multiple (up to five) annotators and the annotation average of
word bounding boxes and highest agreement of labeled content
strings was used to eliminate spurious data. We use a split con-
taining ~ 108K word images for training, ~13K for validation, and
~14K images for testing TSB network; all splits are document-
exclusive.

Imgur5K is unique among handwriting datasets in that it meets
all of the following criteria: its content is structured into words
and sentences instead of isolated characters, it is not restricted
to a single source domain, it has an author:document ratio of
approximately 1, and it contains a vast array of image formats,
resolutions, framings, and backgrounds.

Fig. 3 shows a sample set of word images from this collection.
Table 1 compares Imgur5K to other popular handwritten datasets
in English, under different attributes. Clearly, Imgur5K has much
more writer variability and possesses real world challenges in
terms background clutter, variability in pen types and style ranges
from noisy writing to precise calligraphy written by experts.
The last column of Fig. 3 shows a typical sample taken from
different existing datasets in order to highlight the in-wild nature
of Imgur5K. Other datasets are mainly captured either in a con-
strained setting or written by one author alone. Finally, Imgur5K
is already available online from: '.

6 EXPERIMENTS

We rigorously tested our proposed TSB architecture and report
qualitative and quantitative results, as well as a user study, com-
paring our results with previous work.

1. https://github.com/facebookresearch/IMGURSK-Handwriting- Dataset
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6.1 Implementation details

We use a fixed-size localized style image of size 256 x 256.
The localized image is cropped out from the larger scene image
along with its context while preserving the original aspect ratio
of the word present inside it. We also assume the ground-truth
rectangular word bounding box information available. The syn-
thetically rendered content image is of dimension 64 x 256 for
training, and during inference it uses a variable width image of
dimension 64 x W. The style and content encoders, (Fs) and
(F.), respectively, (Sec. 3.1), use ResNet34 [35], following the
format proposed by Zhanzhan et al. [47] for deep text features and
the modification as explained in Sec. 3.1.

We use StyleGAN?2 [28] for our generator (Sec. 3.2). We base
our generator on the StyleGAN2 variant with skip connections,
a residual discriminator, and without progressive growing. We
adapt this architecture to also produce foreground masks for the
generated image as shown in the Fig. 2. We also modified the
input dimensions to generate output images of size 64 x 256. The
learned content representation e, € R**16 is given as input to the
first layer of the generator. As explained in Sec. 3.2, we do not use
noise inputs, instead conditioning the output on our latent style
and content vectors.

Our models were all trained end-to-end, with the exclusion of
the pre-trained networks — the typeface classifier, C, of Sec. 4.1
and recognizer, R of Sec. 4.2 — which were kept frozen. We use the
Adam optimizer with a fixed learning rate of 0.002 and batch size
of 64. We empirically set the relative weights of the different loss
functions as: Ay = 1.0, Ay = 500.0, A3 = 1.0, \y = 1.0, \5 =
10.0, A\¢ = 1.0.

Finally, our method is implemented using the PyTorch dis-
tributed framework [48]. Training was performed on 8GPUS with
16GB of RAM each.

6.2 Datasets

Our experiments use a variety of datasets, representing real and
synthetic photos, scene text and handwriting. Below we list all the
datasets used in this work. The sets and annotations collected as
part of this work shall be publicly released, as well as any test
splits used in our experiments.

Synthetic data. We use three different synthetic datasets in this
work.

SynthText [49]: We use the SynthText in the wild dataset for
training our architecture on synthetic data in a self-supervised
manner. The synthetically-trained model is later used for purpose
of performing an ablation study (Sec. 6.4) on our architecture.

Synth-Paired dataset: This is the test synthetic dataset prepared
for the ablation study (Sec. 6.4) using the pipeline presented
by SRNet [8] where we can produce target (new content) style
word images following the source style. Note that, the above two
datasets and the synthetically TSB trained model is only used for
the ablation study. All other experiments use real world datasets
where the supervision of target style is unavailable.

Synth-Font dataset: This is a separate word level synthetic set of
around 250K word images, sampled from ~2K different typefaces
using again the pipeline presented by SRNet [8]. This separate set
was used in pre-training our typeface classification network, C, as
mentioned in Sec. 4.1.

In addition to the synthetic sets, we used collections of real
images. These sets are described below, with the exception of our
own, Imgur5K, detailed in Sec. 5.

6

ICDAR 2013. [50] This set is part of the ICDAR 2013 Robust
Reading Competition. Compared to other real datasets, ICDAR
2013 images are of higher resolution with prominent text. There
are 848 and 1,095 word images in the original train and test sets.

ICDAR 2015. [51] Released as part of the ICDAR 2015 Robust
Reading competition, this set was designed to be more challenging
than ICDAR 2013. Most of the images in this set have low res-
olution and viewpoint irregularities (e.g., perspective distortions,
curved text).

TextVQA. [52] The dataset was collected for the task of visual
question answering (VQA) in images. It contains 28,408 scene
photos sourced from the Openlmages set [53], with 21,953 images
for training, 3,166 for validation, and 3,289 for testing. While the
purpose of the dataset is VQA, it contains a large variety of scene
text in different, challenging styles, more so than other sets. We
annotated this set with word polygons and recognition labels.

IAM Handwriting Database. [46] This set contains 1,539 hand-
written forms, written by 657 authors. IAM offers sentence-level
labels, lines, and words. In our work, we only use word-level
annotations. We use the official partition for writer independent
text line recognition which splits forms into writer-exclusive
training, validation, and testing sets.

6.3 Evaluation measures

We follow the same quantitative evaluation measures as previous
scene text editing methods [8], [9]. We compare target style
images with generated results using these measures: (1) Mean
square error (MSE), the [y distance between two images; (2)
structural similarity index measure (SSIM) [54]; (3) Peak signal-
to-noise ratio (PSNR). Low MSE scores and high SSIM and
PSNR scores are best.

These metrics can only be used with a synthetic image set,
where we can generate a corresponding target style image. To test
on real photos, where we do not have a prediction of how new text
would look with an example style, we measure text recognition
accuracy. It is computed as

(Z H(R(Osuci) == Ci))7 (6)

i

Acc =
Ftest

or, the number of times a predicted string is identical to the actual
string c;. To this end, we use our pre-trained text recognition
network, R, (Sec. 4.2).

To evaluate real handwritten images, we use methods from the
GAN literature, also adopted by previous handwritten text gen-
eration methods [13], [14], [34]: (1) Frechet Inception Distance
(FID) [55] calculates the distance between the feature vectors
of real and generated images, and, (2), the Geometric Score
(GS) [56], which compares geometrical properties between the
real and generated manifolds. Similar to others [14], we evaluate
GS on a reduced set, due to its computational costs, randomly
sampling 5K images in both real and generated sets. We resized
the images to a fixed size (64 x 256) for GS computation. FID was
computed on sampled real and generated images the size of the test
sets using variable-width images (299 x W) following the protocol
presented in [14]. Lower scores on both metrics are better. Finally,
we report results of a user study which compares the visual quality
of our results and those of previous works. Details of this study
are discussed in Sec. 6.5.
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Fig. 4: Word-level style transfer results. Each image pair shows input source style on the left and output with novel content (string)
on the right. All examples are real photos (no synthetic data) taken from ICDAR13 [50], TextVQA [52], IAM handwriting [46], and
the Imgur5SK set collected for this work. Note that the handwritten results are of variable widths, but resized to fixed dimension in this

figure for better visualization. See supplemental for more results.

Loss/Method Scale Mask MSE| SSIMT PSNRT FID |
D M v 0.0857  0.2201 1259 152,03
p+er M v 0.0672  0.1754  13.015  165.41
Cp + LR+ brec M v 0.0180 0.4164  18.68 86.79
Lp + LR+ lrec + Leye M v 0.0162  0.4434  19.23 99.45
Lp 4+ LR + Lrec + Leye + Lype S v 0.0199  0.4041 18.23 87.68
Lp + LR + Lrec + Leye + Lype M X 0.0172  0.4416 19.07 90.67
Lp 4 LR + Lrec + Leye + Liype M v 0.0196 04174 1835  79.49

TABLE 2: Ablation study comparing the influence of different
loss functions on our TSB results.

6.4 Text generation results

Ablation study. Table 2 provides an ablation study evaluating the
effects of the different loss functions, scale of style features and the
role of having masks while training TSB (Sec. 4). The first three
quantitative metrics (MSE, SSIM and PSNR) focus on pixels level
differences and may not reflect the true perceived visual quality.
Hence, we also add the FID metric which is adopted in many GAN
based generative models. The first setting (£ ) mimics the original
style GAN training with the difference that the noise inputs are
replaced with conditional style and content vectors. Although the
images are produced in a realistic manner, it performs worst in
terms of metrics since there are no losses which captures the
respective content and style. Using £p + {r while training also
produces realistic results but the output style is still inconsistent
with the input style. Only when we add the reconstruction loss,
Lrec, do the input and output styles became consistent. We improve
results even more by adding the cyclic reconstruction loss, ¢y,
which contributed to even better consistency between source and
target styles. Note that, the above settings used the multi-scale
(M) style representation and utilizes the foreground mask while
training.

Dataset IC13[50] IC15[51] TextVQA [52]
Real [40] 923 71.6 50.3
SRNet [8] 49.8 234 30.3
SWAPText [9]* 68.3 54.9 -

Our TSB 97.2 97.6 95.0

TABLE 3: Text recognition accuracy on images from three
datasets. Real is provided as the baseline recognition of R on
the real photos. * Denotes results reported by SWAPText [9] on
an undisclosed subset of ICDAR 13. Since they did not release
code, their numbers are not comparable with others and provided
here only for reference.

The last three rows compares the model trained with the per-
ceptual loss, £;,,e in addition to the other loss functions presented
before. Here we notice a change in performance where the FID
metric starts improving while there is a drop in other metrics such
as MSE, SSIM and PSNR. This behaviour is because the latter
metrics are biased towards preferring output images which blurry
or smooth and penalize the sharp images. We asserted this by
performing Gaussian filtering on the output images and noticed
the drop in performance across these metrics. Here we consider
the FID metric to be more reliable and consistent with human
visual inspection. Our best results in terms of FID metric (last
row), are produced when we have full text-specific perceptual loss,
Liype, of Sec. 4.1 with multi-scale style feature and trained using
foreground masks. The perceptual and texture losses, £per, ey,
respectively, constrain the activations of the initial layers and
the stationary properties of the generated image, making them
consistent with input style image. The embedding loss, £emp,
penalises the results based on typeface-level features.



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
h\\lllllj///

ENJOY.
Wubrp
Z <

“ %
~ ~

j'aummrcn}

4

,gmuummf

7 y > y
o 7

S Portes
30 & 88

) & 88

% E"!ergera - "E U"fgence
1 exit £ sortir

THRIFT
STORE

P

IMAGES
RIDES

% DEL0S

Fig. 5: Scene text editing results. On left we show the original scene image with word bounding boxes shown in blue rectangles,
and on right we present the edited image with text content replaced and blended back using simple Poisson blending [57] to the scene
image. These examples are taken from ICDAR13 [50] and TextVQA [52] dataset. See supplemental for more results.

Recognition accuracy on real photos. Following others, we com-
pare machine recognition accuracy on generated images. Accuracy
is measured using Eq. (6) and we compare with SRNet [8] and
SWAPText [9]. For these tests, we did not fine-tune our model on
the ICDAR 2013 and ICDAR 2015 sets since these provide very
few training images.

Importantly, the test splits used by SWAPText [9] and SR-
Net [8] were not disclosed. Furthermore, SWAPText did not share
their code. We consequently provide SWAPText numbers from
their paper, only for reference, although they are not directly
comparable with ours. We use a third party implementation [58]
of SRNet along with a pre-trained model trained in a supervised
setting for comparing it with our TSB model on the same test
images.

Table 3 reports these recognition results. The first row provides
baseline accuracy of our recognizer, R (Sec. 4.2), on the original
photos. This accuracy is computed by comparing its output with
the human labels available for these sets. Evidently, the recog-
nition engine is far from optimal, yet despite this, serves very
well in training our model. Our method clearly generates images
with better recognizable text compared with images generated by
SRNet [8] and SWAPText [9].

Qualitative results. Fig. 4 presents word-level qualitative samples
generated by our TSB. We show both the source (input) style box

Method Dataset FID| GS|
Davis et al. [14]  IAM words 10495 1.37x 104
Our TSB IAM words 44.68  1.09 x 10+
Our TSB Our ImgurSK words ~ 47.37 5.45 x 10°

TABLE 4: Quantitative handwritten results.

and our generated results with new content. Our method clearly
captures the desired source style, from just a single sample. To
our knowledge, this is the first time one-shot text style transfer
is demonstrated for both scene text and handwriting domain.
Fig. 5, presents scene text editing results from ICDARI13 [50]
and TextVQA [52] datasets. The left image is the original scene
image along with words marked for replacement (shown in blue
bounding boxes) and the right one is edited image using new
content by the TSB. We demonstrate these results by selectively
stitching back the generated word image (foreground and back-
ground separately using masks) back to the source bounding box
using Poisson blending. See supplemental for more details.

Offline handwritten generation results. Table 4, provides quanti-
tative comparisons of generated handwritten texts, comparing our
method with Davis et al. [14] the recent SotA method designed
specifically for generating handwritten text. Since they did not
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Domain Method Original/Generated
Real 87.00
Scene Text SRNet [8] 28.64
Our TSB 58.88
Real 87.39
Handwritten  Davis et al. [14] 37.45
Our TSB 65.76
Comparison TSB vs. SRNet [8] 717.70
TSB vs. Davis et al. [14] 77.65

TABLE 5: User study. The user study shows clear margin in
favor of our results, across scene text and handwriting domains.
See Sec. 6.5 for details.

report FID/GS metrics for IAM dataset at word level, we took
their official implementation (available from the author’s Github
repository) along with the pre-trained model for validating these
results. We report FID scores where the lower the values better the
generation quality. Evidently, here too, our method outperforms
the previous work.

Qualitative examples of handwritten output are provided in
Fig. 4. We emphasize again, that handwritten styles are learned
in a one-shot manner, from the single word example provided for
the sourced style while previous methods such as Davis et al. [14]
uses a much larger image (a sentence or two) to extract the style
representation.

6.5 User study results

Text styles and aesthetics are ultimately qualitative concepts, often
designed to appeal to human aesthetics. Recognizing that, we also
evaluate generated images in a user study, comparing our results
with those of SotA methods. Specifically, we tested the quality
of scene text generation methods by randomly sampling 60 word
images from the ICDAR 2013 set, and used them as source styles
for comparing our method with SRNet [8]. We compared the
quality of generated handwritten word images by sampling 60
images from different authors present in the IAM dataset. These
were used as style source images when comparing our results with
those produced by Davis et al. [14]. These style images were line
instances for Davis et al. [14] since the original method showed
results using lines as style examples, whereas our TSB is applied
at the word level. We used just a single word instance from the
same author, as the style example. The target generation was set at
word-level. We asked eight participants to rate generated images
in two separate tasks.

In the first task, we presented participants with randomly-
ordered real and generated images, from our method and its base-
lines (SRNet [8] for scene text; Davis et al. [14] for handwriting).
Users were asked to classify images as either Original (sampled
from real datasets) or Generated. We present our findings in Ta-
ble 5. Numbers are the percent of times users considered an image
to be real. Rows labeled as Real report the frequency of correctly
identifying real photos. In both scene text and handwriting, users
misidentified our results with genuine images nearly twice as
often as the images generated by our baselines, testifying to the
improved photo-realism of our results.

The second task presented a source style image alongside
photos with the same style but new content, generated by our
method and SRNet [8] for scene text, and Davis et al. [14] for
handwriting. Participants were asked to select the more realistic

Source Style =#  New Content
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Fig. 6: Limitations of our approach. Qualitative example scene
text (top) and handwritten (bottom) failures. These failures are due
to local style variations (e.g., colors varying among characters),
metallic colors which were not well represented in the training,
and uniquely complex calligraphy for handwriting.

Source Style

-—) New Content

generated photo. The results, reported in the last row of Table 5,
show that the participants preferred our method over SRNet,
77.70% of the times and over Davis et al. [14], 77.65% of the
times. These results again testify to the heightened photo-realism
of our method compared to existing work.

7 LIMITATIONS OF OUR APPROACH

Fig. 6 offers sample generation failures in scene text (top) and
handwriting domains (bottom). Most of these examples share
complex styles where: (a) The target foreground font color/style
is inconsistent with the input style image, (b) Cases where the
generation is not photo-realistic. Some of these complex scenario
includes the text is written in metallic objects, different colors for
different characters, etc. Regardless, in all these cases, our method
managed to correctly generate the target content.

In case of handwriting, there are few instances where some of
the characters in the target content are blurred or not generated
in a realistic manner. This happens mostly in scenarios when
the source style image is too short (< 3 characters). Row 4
& 5, Col. 1 presents failure cases where the input style is a
very complex form of calligraphy. The other failure examples
shown in the figure belong to the scenarios where the system
didn’t capture the cursive property of the input style or got the
shear incorrectly. In our current set-up we used a pre-trained text
recognizer which is trained only on scene text images. We believe
that many such issues could be mitigated if we pre-trained model
from handwritten domain itself.

8 CONCLUSION

We present a method for disentangling real photos of text, extract-
ing an opaque representation of all appearance aspects of the text
and allowing transfer of this appearance to new content strings. To
our knowledge, our method claims a number of novel capabilities.
Most notably, our TSB requires only a single source style example:
Style transfer is one-shot. Our disentanglement approach is further
trained in a self-supervised manner, allowing the use of real photos
for training, without style labels. Finally, unlike previous work
we show synthetically-generated results on both scene text and
handwritten text whereas existing methods were tailored to one
domain or the other, but not both.

Our method aims at use cases involving creative self ex-
pression and augmented reality (e.g., photo-realistic translation,
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leveraging multi-lingual OCR technologies [59]). Our method can
be used for data generation and augmentation for training future
OCR systems, as successfully done by others [49], [60] and in
other domains [61], [62]. We are aware, however, that like other
technologies, ours can be misused, possibly the same as deepfake
faces can be used for misinformation. We see it as imperative that
the abilities we describe are published, to facilitate research into
detecting such misuse, e.g., by moving beyond fake faces to text,
in benchmarks such as FaceForensics++ [63] and the Deepfake
Detection Challenge (DFDC) [64]. Our method can also be used to
create training data for detecting fake text from images. Finally, we
hope our work will encourage regulators and educators to address
the inexorable rise of deepfake technologies.
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1 INTRODUCTION

This supplemental provides details of the underlying networks
used as part of our proposed Text Style Brush (TSB) architecture
(Sec. 2) and details of the synthetic dataset (Sec. 3). Finally we
offer multitudes of qualitative results from different datasets and
domains mentioned in the paper, with examples of results stitched
back into the original photos and word level results, all in Sec. 4.

2 NETWORK DETAILS

Our proposed TSB architecture consists of seven networks: style
encoder, (Fy), content encoder, (F.), style mapping network,
M, stylized text generator, (G), and networks C, R, and D
used to compute our various loss functions, representing type-
face classifier, recognizer, and discriminator, respectively. The
following notations are used to describe each component of the
network: convolutional layer (Conv), pooling layer (Pool), residual
convolutional block (ResBlock), average pooling layer (AvgPool),
fully connected layer (FC), stride (s), upsampling factor (up),
kernel size (k) and channels (c).

Table 1 and 2 presents the encoder architecture for style and
content respectively. Note that we use similar architecture for both
encoders except the first and last layer. The style encoder takes
input a localized scene RGB image along with word bounding
box (Word BB). The last layer uses a region of interest (Rol) align
operator as described in Mask R-CNN [1] which pools features
coming from the desired word region. The style representation is
produced by e; = FS(]IS,C), a 512D representation.

The content encoder, shown in Table 2 takes in a gray scale
image. While training the input image is set to fixed dimensions
64 x 256 and the output feature matrix is of dimension 512 x 4 x
16. Here, 512 denotes the number of channels. While testing the
input is set to variable width 64 x W, which allows target strings
of different lengths to be generated in original aspect ratio. The
content representation is given by e, = F.(Z;s .).

Table 3 presents the style mapping network architecture. It
takes the style encoded vector, eg, as input and outputs layer
specific style components denoted as w ;, Vi € [1, 15]. The Norm
refers to the Normalization layer which is given as:

€s

1 512 o ’
5123 2_i—1Cs; T €

(I

upport’

ORIGINAL

Fig. 1: Sample word images from our synthetic datasets.

Here, e = 1e—8 is used for numerical stability.

Table 4, presents the stylized text generator architecture. Our
generator is a modified version of the StyleGAN2 with skip
connections and without progressive growing. The input to the
generator is the learned content feature matrix, e., of dimension
512 x 4 x 16. Each block shown in the table contains modulated
convolutional [2] style layers (StyleConv), RGB layers (RGB-
Conv), and soft mask layers (MaskConv). These layers (Style,
RGB, Mask) uses the corresponding style vectors denoted as w ;
for modulating the weights. The output from our generator is taken
from the last RGB layer which produces an image of dimension
64 x 256 along with a soft mask image of same dimensions. We
base our discriminator architecture on StyleGAN2 [2] where the
input is of dimension 3 x 64 x 256 and the output is a scalar value
denoting the score for real/fake.

We used the standard off-the-shelf architectures for our text
recognizer, R, and typeface classifier, C'. The recognizer uses the
existing pre-trained word recognition model of Baek et al. [3].
Of the models described in that paper, we chose the one with
the following configuration, though we did not optimize for this
choice: (1) spatial transformation network (STN) using thin-
plate spline (TPS) transformation, (2) feature extraction using
ResNet network, (3) sequence modelling using BiLSTM, and (4)
an attention-based sequence prediction. Similarly, we built our
typeface classifier using the VGG19 network [4].

3 DATASET DETAILS
3.1 Synthetic dataset

The Synth-Paired and the Synth-Font datasets are created follow-
ing the pipeline presented by SRNet [5]. We used a third party
implementation of the rendering pipeline [6]. The background
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Layers Configurations Output
Input RGB Image (Is,c), Word BB 256 x 256
Conv0-1 c:32 k:3x3 | 256 x 256
Conv0-2 c:64 k:3x3 | 256 x 256
Pooll s:2 k:2x2 | 128 x 128
c:128,k:3x 3
ResBlock] ci128.k:3 % 3 x 1 128 x 128
Convl c: 128 k:3x3 | 128 x 128
Pool2 s:2 k:2x2 64 x 64
c:256,k:3x%x3
ResBlock2 c:256 k:3x3 X 2 64 x 64
Conv2 c: 256 k:3x3 64 x 64
Pool3 s:2 k:2x2 32 x 32
c:512,k:3x3
ResBlock3 c:512k:3x3 X 5 32 x 32
Conv3 c:512 k:3x3 32 x 32
Pool4 $s:2 k:2x2 16 x 16
c:512,k:3x%x3
ResBlock4 c:512k:3x3 X 3 16 x 16
Conv4-1 c:512 s:1 k:3x3 16 x 16
ROI Align | c: 512 1x1

TABLE 1: Style encoder architecture.

Layers Configurations Output
Input Content Feature Matrix (ec) 4 x 16
StyleConv w1 up =1
Blockl RGBConv  ws2 up=1 4 %16
MaskConv w3 up =1
[StyleConv  ws 3 up = 2]
StyleConv  ws4 up=1
Block2 RGBConv  wss5 up=1 8 x 32
[MaskConv ~ wse up = 1]
[StyleConv ~ wsg up = 2]
StyleConv ~ ws,7 up=1
Block3 RGBConv wss up=1 16 x 64
[MaskConv ~ ws g9 up = 1]
[StyleConv ~ ws,9 up = 27
StyleConv ~ ws 10 up=1
Block4 RGBConv  ws11 up=1 32 x 128
| MaskConv =~ ws,12  up = 1]
[StyleConv ~ ws 12 up = 27
StyleConv ~ ws 13 up=1
Block5 RGBConv  we 1y up=1 64 x 256
| MaskConv ~ ws 15 up = 1]

TABLE 4: Stylized text generator architecture. Here each
StyleConv block uses 512 output channels and kernel size,
k = 3 x 3. While the RGBConv, MaskConv uses three and one
output channels respectively with a kernel size, k = 1 x 1.

stylized to appear similar to the original. The new content is then
stitched back into the photo, entirely replacing the contents of the
detected box. The new content is stitched into the photo using
simple Poisson blending [9]. Fig. 6, 7 presents few samples of
input photos along with their edited versions, from images taken

Layers Configurations Output
Input Gray Scale Image (Z3 ) 64 x 256
Conv0-1 c:32 k:3x3 | 64 x 256
Conv0-2 c:64 k:3x3 | 64 x 256
Pooll s:2 k:2x2 | 32x128
c:128,k:3x3
ResBlock1 c:128.k:3x 3 x 1 32 x 128
Convl c: 128 k:3x3 | 32x128
Pool2 s:2 k:2x2 16 x 64
c:256,k:3x3
ResBlock2 c:256.k:3x 3 X 2 16 x 64
Conv2 c: 256 k:3x3 16 x 64
Pool3 s:2 k:2x2 8 x 32
c:512,k:3x3
ResBlock3 c:512.k:3x3 X 5 8 x 32
Conv3 c:512 k:3x3 8 x 32
Pool4 s:2 k:2x2 4 x 16
c:512,k:3x3
ResBlock4 c:512.k:3x3 X 3 4 x 16
Conv4-1 c:512 s:1 k:3x3 4 x 16
TABLE 2: Content encoder architecture.
Layers Configurations Output
Input Style Vector (es) 1 x 512
Norm. 1 x 512
FC1 c:512 k:1x1 1 x 512
FC2 c: 7680 k:1x1 | 15x512

TABLE 3: Style mapping network architecture.

images were downloaded from the original code repository of
SynthText [7]. We used ~2K different font styles which were
downloaded from the UnrealText repository available at [8]. Fig. 1
offers some sample synthetic images from these datasets.

4 QUALITATIVE RESULTS

We offer many qualitative style transfer results from all the
datasets used in this work. Word (box) level style transfer results
are shown in the following figures: ICDAR13 (Fig 2), TextVQA
(Fig 3), IAM Handwriting database (Fig 4), Imgur5K (Fig 5).

In addition, we provide sample text editing results where,
given an input photo with an automatically detected text box, our
method replaces the contents of that text box with a new string,

from the ICDAR13 [

] and TextVQA set [1 1] respectively.
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Fig. 2: Word level style transfer results: ICDAR13 [10]
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Fig. 3: Word level style transfer results: TextVQA [11]
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Fig. 4: Word level style transfer results: TAM [12]
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Fig. 5: Word level style transfer results: Imgur5SK
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Fig. 6: Scene text editing results on ICDAR13 [10] dataset. On left, we show the original image, and on right we present the edited
image with selected words (shown in blue boxes) replaced with a new content following the same style of original content.
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Fig. 7: Scene text editing results on TextVQA [11] dataset. On left, we show the original image, and on right we present the edited
image with selected words (shown in blue boxes) replaced with a new content following the same style of original content.



